

Linking CTR to Energy Sustainability and Prosperity in the DPRK

David F. von Hippel

Nautilus Institute for Security and Sustainability

Presentation for APLN Series of Workshops on "Co-operative Solutions for North Korean Denuclearization"

Workshop 2: CTR+ and Energy Security in the DPRK
September 24th, 2021

OUTLINE OF PRESENTATION

- Introduction
- "Third-Party" CTR+ DPRK Energy Sector Engagement/Assistance Project
 - > Tasks
 - Organizations and Budget
- The DPRK as a Participant in Regional Energy Infrastructure
- Identifying and Matching DPRK Energy Needs with Consortium Assistance Criteria
- Possible Consortium Priority Projects
- Conclusions

- In any resumption of diplomacy, it must be recognized that the DPRK's energy insecurity is a key (though hardly only) driver of its choice to pursue nuclear, as well as chemical and biological weapons...but
- Energy sanctions resolutions passed to date are very unlikely to have the desired effects
- As such, cooperative threat reduction "plus" (CTR+) activities addressing the DPRK energy sector, focusing particularly on those that seek to involve the DPRK in international energy projects, can play important roles in engagement

Working with North Koreans: Nautilus/KANPC DPRK Humanitarian Wind Power Project

Working with North Koreans: Nautilus DPRK Building Energy Efficiency Training

Working with North Koreans: Nautilus Regional Energy Security Project (2019)

"Third-Party" CTR+ DPRK Energy Sector Engagement/Assistance Project

- Overview: 6 12 Month Pilot Energy-efficiency
 Renewable Energy (EE/RE) Engagement Program
 - Building envelope/system efficiency (including in PY, for visibility), residential lighting improvements, industrial and irrigation motors
 - Small hydro, wind, solar power, microgrids, agricultural equipment efficiency
 - Humanitarian measures in homes/schools/clinics
 - Job creation in DPRK during project (and after)
 - > CO₂ emissions reductions (credits for ROK?)
 - Not likely to violate spirit of sanctions
 - Cargo ships headed north with insulation = image of cooperation
 - > First step to rebuilding T&D grid from bottom up
 - Pilot program for ongoing 5-year effort

Key Tasks for Project Planning and Delivery

- Negotiate Funding and Permissions: Identify funding sources, obtain permissions (or waivers) as needed
- Survey of DPRK Energy Use and infrastructure in candidate buildings for EE measures, survey of potential sites/locations for mini-grids/RE...
- Modeling of Building Energy Performance and Design of EE Measures: use data on buildings/energy use to select a suite of EE measures, model efficacy in application to DPRK buildings
- Training of DPRK Counterparts in Building Energy Surveys, Building Energy Modeling (USG permissions required?)

Key Tasks for Project Planning and Delivery

- Finalize EE Measure Selection, Mini-grid/RE Site and Measure Selection: Selecting and costing EE and RE measures/related equipment, seeking donations of materials, iterative to fit budgets
- Prepare Plans to Install Measures, and Train **Installers**: Choose limited set of apartment types, RE/mini-grid sites, train DPRK/international technicians
- Order and Ship Project Materials and Equipment:
 - Insulation, weatherstripping, heat controls, windows/doors, datalogging equipment, mini-grid equipment (switches, wiring, electricity storage, inverters...), RE equipment (wind and solar), grid intertie equipment, equipment to install/test all of the above
 - Possible that some materials/equipment can be obtained free or at concessional prices by, e.g., ROK firms willing to contribute

Key Tasks for Project Planning and Delivery

- Install EE and RE Measures on project sites
- Quality Control/Quality Assurance for Installations, Monitoring, and Training of Users: QA/QC on installations of RE/EE equipment
 - Monitor some subset of installations (work out sharing of data with counterparts), train residents, users/maintenance people of mini-grids and RE systems to use and maintain systems
- Communicate Results of Project to Stakeholders, Plan Next Steps: Results from monitoring, digest of participant interviews (both NKs and international) to identify challenges, benefits to different parties, make plans to build on project
- Overall Project Management

- Obtaining Funding and Permissions
 - Group/groups experienced in working with DPRK-related agencies in the US and the ROK, possibly Europe
- Survey of DPRK Energy Use
 - Individuals or firm experienced in building energy, energy use audits to international standards: US or European NGOs focusing on EE, private contractors/academics in US, Europe, ROK and/or China
- Modeling of Building Energy Performance and Design of EE Measures
 - Individuals or groups with building energy modeling expertise, e.g. U,S. national lab staff/former staff, NGO
- Training of DPRK Counterparts in Building Energy Surveys and Modeling
 - Possibly more academic of groups in two categories above

- Finalize Selection of EE Measures, Mini-grid/RE Site and Measure Selection
 - Both via consultations with NKs, but require different skills. Person/group experienced in working in DPRK, plus EE/RE experts, from NGOs, national labs/institutes, academia
- Prepare Plans to Install Measures, and Train Installers
 - Involvement of groups working in measure/site selection, managed by firm adept in implementing big projects rapidly
- Order and Ship Project Materials and Equipment
 - Probably lead firm as above, with advisors from previous tasks for continuity

Install Measures

- Teams of NKs and a few internationals, the latter carefully chosen professionals, plus translators, working on individual apartments under international foremen coordinating with DPRK counterparts
- > Teams may specialize: insulation, wallboard, paint...
- Under ultimate direction of lead firm as above
- Quality Control/Quality Assurance for Installations, Monitoring, and Training of Users
 - Separate firm experienced in QA/QC for these types of projects, possibly one with experience working for multilaterals, utilities, or governments

September 2021 APLN Workshop 13

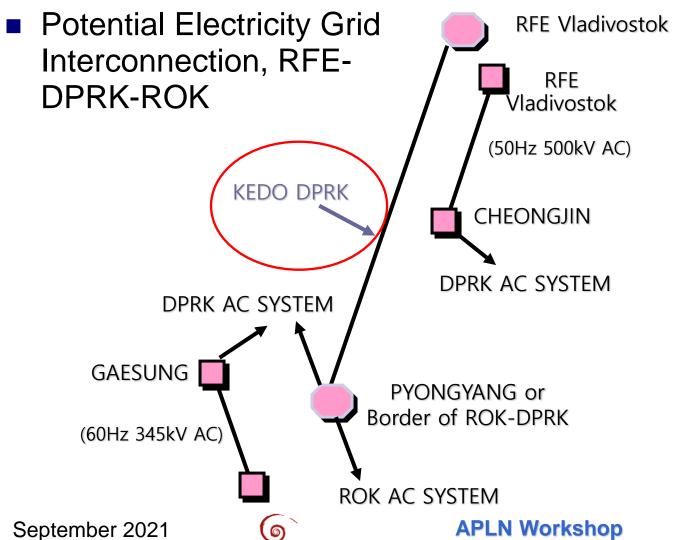
- Synthesize, Communicate Results of Project to Policyholders, Plan Next Steps
 - Group(s) with experience communicating with policyholders on DPRK issues
- Project Management
 - Probably same lead firm as above, but with coordination/oversight from a governing board of individuals with DPRK experience

Illustrative Budget and Project Timing

- Target—project that can be completed in 12 months, at a cost of about \$100M
 - Cost is purely illustrative—can be scaled as needed (but BEFORE offering to DPRK)

Costs

- Building energy efficiency/renewable energy hardware
- Installation labor costs (DPRK and international)
- Administration costs
- Shipping costs
- Project/program preparation



Activities Leading to Cooperation with DPRK on Energy and Related Issues

- Important to design projects that can be built upon with future engagement activities, also as models for peaceful redevelopment activities by the DPRK itself
 - Good projects should start relatively small
 - > Be scalable based on needs and funds available
 - Designed to build/take advantage of growing technical/organizational capacity of DPRK partners
 - Meet the needs of several different DPRK constituents (and of participants/supporters in ROK, elsewhere—especially NEA region)
 - Constructed so as to contribute toward peaceful, sustainable improvements in DPRK economy

- Potential DPRK Participation in Regional Resource Sharing Efforts: Options
 - Regional oil pipelines
 - Regional natural gas pipelines
 - Electricity grid interconnections
 - Could ultimately involve nuclear reactors in the distant future, and/or connections to large renewable generation, such as in Mongolia, via schemes such as "The Asian Super-Grid" and "Gobitec")
 - Co-development/deployment of renewable energy and energy efficiency technologies
 - Sharing of excess oil refining capacity
 - Cooperation on transportation infrastructure
 - LNG import capacity co-development, DPRK+ROK
 - Cooperation on regional emergency fuel storage

- Potential Benefits of DPRK's Involvement:
 - The DPRK could gain access to energy resources that would be difficult to develop on its own
 - The DPRK obtains "rents", monetary payments or energy supplies, in exchange for transit
 - DPRK could obtain better access to conventional energy, energy efficiency, renewable technologies

AND

- The DPRK would be obliged to work with the countries of the region to negotiate access rights and fees, tariffs, other parameters of cooperative projects
- The DPRK would need to undertake, make public assessments of its energy resources, infrastructure

- Potential Benefits of DPRK's Involvement (2):
 - Through cooperative projects, DPRK will learn (rather, continue to learn) economic cost-benefit analysis, other economic and financial concepts
 - Cooperative projects provide substantial opportunities/requirements for capacity-building for DPRK officials and technicians
 - Cooperative projects will allow foreigners better access to the DPRK, allowing them to learn more about the DPRK's needs and situation
 - Correspondingly, through cooperative projects DPRK residents will have expanded contact with people, ideas from other nations
- Very different approach, likely outcomes from negotiations associated with Agreed Framework, 6-party talks (which focused on value received by DPRK)

Identifying and Matching DPRK Energy Needs with Consortium Assistance Criteria

- Energy-focused third-party CTR+ engagement activities must consider DPRK energy needs and wants (not necessarily the same thing)
- ...While at the same time being acceptable to the international community and...
- Seeking to integrate the DPRK in regional initiatives around, for example, sharing of energy and other resources, energy efficiency improvement, greenhouse gas emissions mitigation...
 - Introduce/reinforce market-based approaches
 - Stress need for transparency in transactions, and in regional organizations needed to support initiatives

DPRK Energy Sector Overview

- As of 1990, DPRK per-capita energy use ~ 3X
 China's, 50% of Japan's (with 10-20X GDP/cap)
- Post USSR, decline in supply of imported crude oil in early 1990s
 - More or less stable since 2000 (imports from China)
- Related continuing degradation of electricity generation, Transmission and Distribution (T&D) infrastructure
 - Unreliable, spotty supplies; modest local rehabilitation of power plants, and T&D systems, hydro additions
 - > Consumers generating own power—solar PV, diesels
- Continuing degradation of industrial facilities
 - > Some light industry additions, especially for export

DPRK Energy Sector Overview

- Net result, ~60% reduction in energy use/capita
 - Severe restriction in the energy services available heated homes, lighting, kilometers traveled, and industrial products manufactured
- Biomass (including wood) energy has replaced commercial energy (electricity, oil, and coal)
 - But partially and at low efficiency, and with resulting deforestation and soil degradation
- Coal remains dominant form of energy use
 - Billions of tonnes of reserves (anthracite and lignite), but often used inefficiently

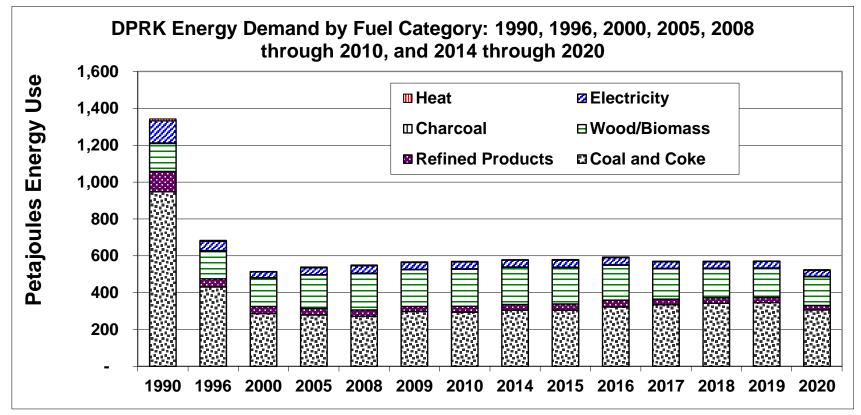
DPRK Energy Sector Overview

- DPRK grid nominally capacity of 8 10 GW, but...
 - Total usable capacity limited by poor state of repair of generation/T&D equipment, seasonal hydro flows...
 - Available generation on the order of 2 3 GW
 - Annual 2020 electricity use similar to Washington DC
- DPRK military used estimated 31% of oil, 25% percent of electricity in 2019
- Investment will be required on a massive scale to repair/refurbish/replace energy system elements
 - > Tens of billions for electricity grid alone
 - Without international assistance, slow and marginal improvements possible at best; continued inefficiency

DPRK Energy Sector—Energy Balance 2019

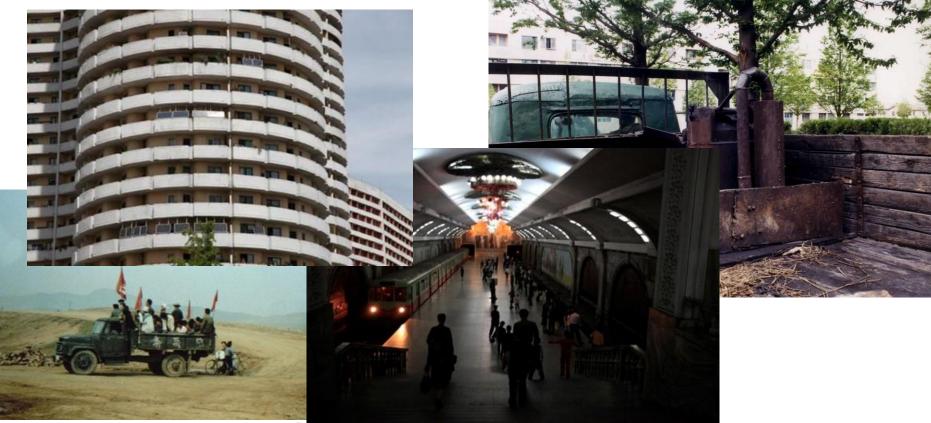
	COAL &	CRUDE	REF.	HYDRO/	WOOD/	CHAR-			
UNITS: PETAJOULES (PJ)	COKE	OIL	PROD	NUCL.	BIOMASS	COAL	HEAT	ELEC.	TOTAL
ENERGY SUPPLY	457	31	14	38	165	-	-	(1)	704
Domestic Production	619	0	-	38	161	-		-	819
Imports	0	30	14	-	4	-		0	49
Exports	163	-	0	-	-	-		1	164
Stock Changes	-	-	-	-	-	-		-	-
ENERGY TRANSF.	(112)	(31)	16	(38)	(7)	2	3	35	(131)
Electricity Generation	(73)	-	(13)	(38)	-	-	3	57	(64)
Petroleum Refining	-	(31)	31	-	-	-		(0)	(0)
Coal Prod./Prep.	(30)	-	-	-	-	-		(4)	(34)
Charcoal Production	-	-	-	-	(7)	2		-	(5)
District Heat Production	(2)		(0)				1		
Own Use	-	-	(2)	-	-	-		(3)	(5)
Losses	(8)	-	-	-	-	-	(1)	(14)	(23)
FUELS FOR FINAL CONS.	345	-	30	-	157	2	3	35	572
ENERGY DEMAND	345	-	30	-	157	2	3	35	572
INDUSTRIAL	155	-	4	-	1	-	-	13	173
TRANSPORT	-	-	10	-	1	-	-	4	14
RESIDENTIAL	139	-	3	-	119	2	2	4	269
AGRICULTURAL	4	-	1	-	19	-	-	1	24
FISHERIES	0	-	1	-	-	-	-	0	1
MILITARY	21	-	9	-	7	-	-	9	46
PUBLIC/COMML	25	-	1	-	5	-	1	4	37
NON-SPECIFIED			-						-
NON-ENERGY	1		1		6				8
Elect. Gen. (Gr. TWhe)	4.34	-	0.74	10.66	-	-		-	15.74

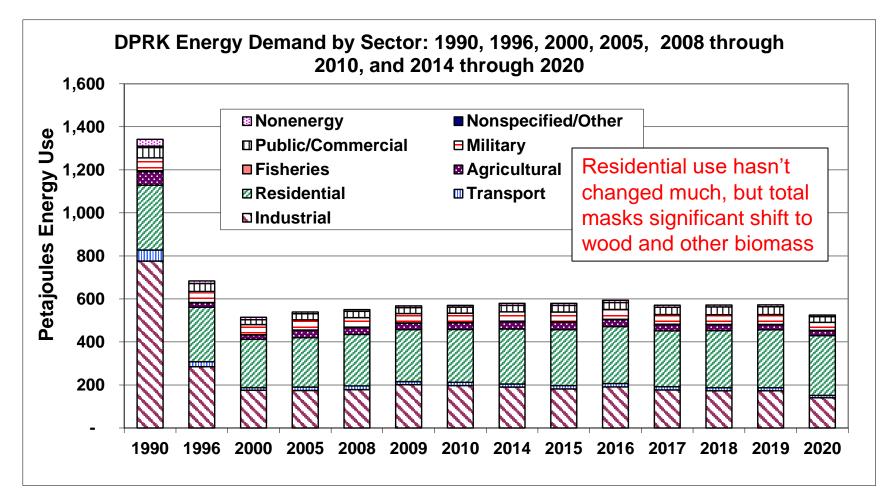
^{*}Note: Gross terawatt-hours for coal-fired plants includes output for plants co-fired with coal and heavy fuel oil.


DPRK Energy Sector—Energy Balance 2020

	COAL &	CRUDE	REF.	HYDRO/	WOOD/	CHAR-			
UNITS: PETAJOULES (PJ)	COKE	OIL	PROD	NUCL.	BIOMASS	COAL	HEAT	ELEC.	TOTAL
ENERGY SUPPLY	379	32	7	39	164	-	-	(1)	619
Domestic Production	461	0	-	39	162	-		-	662
Imports	0	32	7	-	2	-		0	41
Exports	82	-	-	-	-	-		1	83
Stock Changes	-	-	-	-	-	-		-	-
ENERGY TRANSF.	(73)	(32)	18	(39)	(7)	2	5	33	(94)
Electricity Generation	(43)	-	(13)	(39)	-	-	5	51	(40)
Petroleum Refining	-	(32)	32	-	-	-		(0)	(0)
Coal Prod./Prep.	(22)	-	-	-	-	-		(3)	(25)
Charcoal Production	-	-	-	-	(7)	2		-	(5)
District Heat Production	(2)		(0)				1		
Own Use	-	-	(2)	-	-	-		(2)	(4)
Losses	(6)	-	-	-	-	-	(1)	(13)	(20)
FUELS FOR FINAL CONS.	306	-	24	-	156	2	5	32	525
ENERGY DEMAND	306	-	24	-	156	2	4	32	525
INDUSTRIAL	125	-	4	-	1	-	-	10	140
TRANSPORT	-	-	7	-	1	-	-	4	11
RESIDENTIAL	141	-	3	-	121	2	4	6	278
AGRICULTURAL	4	-	1	-	18	-	-	1	23
FISHERIES	0	-	1	-	-	-	-	0	1
MILITARY	17	-	6	-	7	-	-	8	37
PUBLIC/COMML	18	-	1	-	4	-	1	3	26
NON-SPECIFIED			-						-
NON-ENERGY	1		1		6				7
Elect. Gen. (Gr. TWhe)	2.58	-	0.72	10.74	-	-		-	14.04

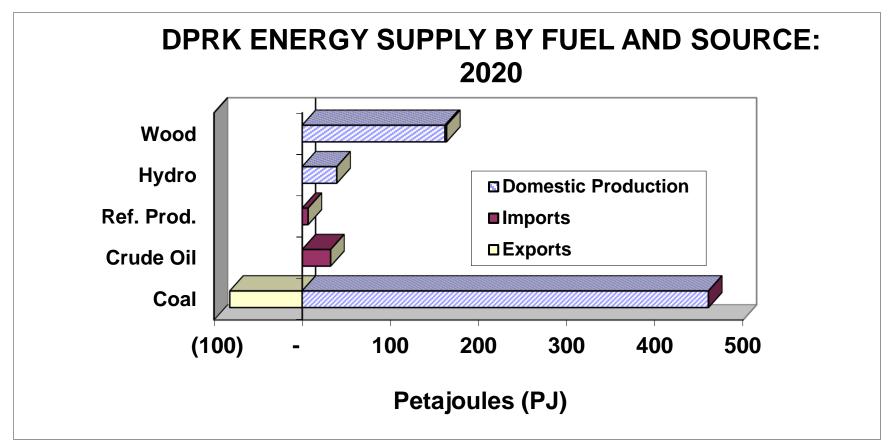
DPRK Energy Demand by Fuel


 Refined products use has probably grew between 2010 and 2017/2018, but likely declined again in 2019/2020 due to supply, income restrictions of sanctions, COVID


DPRK Energy Demand by Sector

 Fuel substitution in the transport sector (biomass-fueled truck); simultaneous multi-use transport (goods, soldiers, civilians); dark (but opulent) Pyongyang subway station, solar PVs sprouting from apartment balconies

DPRK Energy Demand by Sector


Transport, commercial had grown since 2010

DPRK Energy Demand by Fuel

 Most fuel supplies domestic with the significant exception of crude oil and petroleum products

"Third-Party" DPRK Energy Sector Engagement/Assistance Project

- Key Project Elements
 - Energy Needs Assessment: Obtain improved understanding of DPRK energy sector status and needs to inform project design and delivery
 - Building Energy Efficiency Measures: insulation, weatherstripping, heating system controls, windows, lighting improvements/controls, apartments, some other buildings (schools/hospitals/clinics)
 - Mini-grid/Renewable Energy Measures: Probably mostly solar PVs, some wind, possibly storage also possible, with mini-grid system(s) for village/town and/or humanitarian application
 - For both of above, specify, source, purchase, and deliver, material, tools, then organize installation, commission

"Third-Party" DPRK Energy Sector Engagement/Assistance Project

- Key Project Elements (continued)
 - Capacity Building: Training in energy assessment, building energy analysis, measure installation and maintenance/troubleshooting, ongoing data collection
 - Follow-up: Surveys of apartment dwellers, technicians, others as to experience with measures, data collection/analysis from selected installations (and arranging for same), planning for expanded program with DPRK counterparts
 - Linkages to Future Economic Development: identify opportunities (and processes) for in-country production of selected materials (e.g. MgO board), energy-efficient design, new local businesses

Conclusions

- Sustainable solutions to DPRK's long-term energy problems are a necessary, but not sufficient, condition for enduring success in nuclear weapons negotiations
 - Failing to address DPRK's underlying needs for energy services renders solution to nuclear issue unachievable and unsustainable
- Sanctions make life more difficult for ordinary North Koreans, leaving more energy services unmet
 - But not much impact on missile/N-weapons programs
- Energy Cooperation options
 - Domestic-DPRK and regional energy and other networks
 - Engagement options that involve energy efficiency and renewable energy initiatives generally "robust" for application in DPRK, fulfilling many different considerations, few "downsides"
 - Start with smaller, local projects w/ extensive capacity-building
 - Consider regional energy import/export needs and goals
 - KEDO reactors unlikely to be built, but serve as a precedent that DPRK will remember in negotiations

- Solving linked DPRK nuclear weapons and energy insecurity issues requires phased, coordinated, stepwise, multi-faceted approach on local, national, regional levels
 - Consider a 6-12-month ROK-DPRK collaboration pilot program to start, as above, focusing on coordinated renewables, energy efficiency, humanitarian energy aid, economic development
- Build toward integrating DPRK w/ NEA nations in cooperative energy projects supporting goals of cooperative threat reduction
 - Economic integration/market development, transparency of economic and technical negotiations, regional institutionbuilding, collaboration on technical and environmental standards...

THANK YOU!

David F. von Hippel
Nautilus Institute Senior Associate
dvonhip@igc.org

ADDITIONAL SLIDES FOR REFERENCE

Recent Nautilus Publications, DPRK Energy Sector and Engagement Options

- David von Hippel, Peter Hayes, "US-DPRK CTR+: PROVISION OF HUMANITARIAN ENERGY EFFICIENCY, RENEWABLE ENERGY, AND MICRO-GRID MEASURES TO THE DEMOCRATIC PEOPLES' REPUBLIC OF KOREA (DPRK) FOR COOPERATIVE THREAT REDUCTION", NAPSNet Special Reports, May 10, 2021, https://nautilus.org/napsnet/napsnet-special-reports/us-dprk-ctr-provision-of-humanitarian-energy-effeciency/
- David von Hippel, Peter Hayes, "LAYING THE FOUNDATIONS OF DPRK ENERGY SECURITY: 1990-2020 ENERGY BALANCES, ENGAGEMENT OPTIONS, AND FUTURE PATHS FOR ENERGY AND ECONOMIC REDEVELOPMENT", NAPSNet Special Reports, April 25, 2021, https://nautilus.org/napsnet/napsnet-special-reports/laying-the-foundations-of-dprk-energy-security-1990-2020-energy-balances-engagement-options-and-future-paths-for-energy-and-economic-redevelopment/
- David von Hippel, Peter Hayes, "UPDATED ESTIMATES OF REFINED PRODUCT SUPPLY AND DEMAND IN THE DPRK, 2010 – 2020", NAPSNet Special Reports, September 02, 2020, https://nautilus.org/napsnet/napsnet-special-reports/updated-estimates-of-refined-product-supply-and-demand-in-the-dprk-2010-2020/
- David von Hippel, Peter Hayes, "ESTIMATE OF OIL STORAGE CAPACITY IN THE DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA", NAPSNet Special Reports, August 25, 2020, https://nautilus.org/napsnet/napsnet-special-reports/estimate-of-oil-storage-capacity-in-the-democratic-peoples-republic-of-korea/
- David von Hippel, "METHODS FOR REFINING ESTIMATES OF CUMULATIVE DPRK URANIUM PRODUCTION", NAPSNet Special Reports, May 26, 2019, https://nautilus.org/napsnet/napsnet-special-reports/methods-for-refining-estimates-of-cumulative-dprk-uranium-production/
- Edward Yoon, "RECENT ACTIVITIES IN THE DPRK MINERALS SECTOR", NAPSNet Special Reports, April 03, 2019, https://nautilus.org/napsnet/napsnet-special-reports/recent-activities-in-the-dprk-minerals-sector/

Recent Nautilus Publications, DPRK Energy Sector and Engagement Options

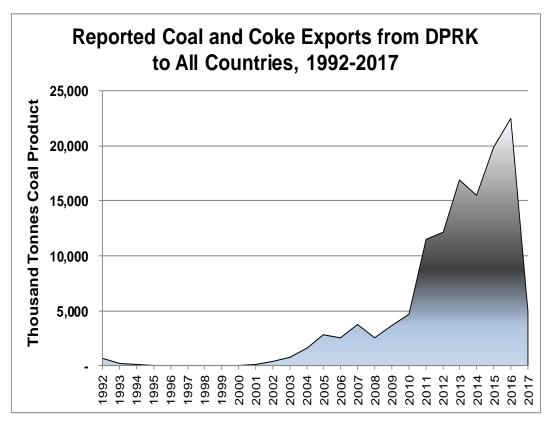
- David von Hippel and Peter Hayes, "DPRK INVESTMENTS IN COAL GASIFICATION DRIVEN BY LONG-RUN JUCHE AND AND SANCTIONS PROOFING", NAPSNet Special Reports, February 06, 2019, https://nautilus.org/napsnet/napsnet-special-reports/dprk-investments-in-coal-gasification-driven-by-long-run-juche-and-and-sanctions-proofing/
- David von Hippel and Peter Hayes, "DPRK IMPORTS OF GENERATORS IN RECENT YEARS: AN INDICATION
 OF GROWING CONSUMER CHOICE AND INFLUENCE ON ENERGY SUPPLY DECISIONS?", NAPSNet
 Special Reports, November 02, 2018, https://nautilus.org/napsnet/napsnet-special-reports/dprk-imports-of-generators-in-recent-years-an-indication-of-growing-consumer-choice-and-influence-on-energy-supply-decisions/
- David von Hippel and Peter Hayes, "DPRK RAILROAD AND SHIPPING SECTOR IMPORTS AND EXPORTS FROM AND TO CHINA AND OTHER NATIONS, 2000-2017: IMPLICATIONS FOR THE STATUS OF THE RAIL AND SHIPPING SUB-SECTORS IN THE DPRK ENERGY ECONOMY", NAPSNet Special Reports, September 05, 2018, https://nautilus.org/napsnet/napsnet-special-reports/dprk-railroad-and-shipping-sector-imports-and-exports-from-and-to-china-and-other-nations-2000-2017-implications-for-the-status-of-the-rail-and-shipping-sub-sectors-in-the-dprk-energ/
- David von Hippel and Peter Hayes, "DPRK MOTOR VEHICLE IMPORTS FROM CHINA, 2000-2017: IMPLICATIONS FOR DPRK ENERGY ECONOMY", NAPSNet Special Reports, August 23, 2018, https://nautilus.org/napsnet/napsnet-special-reports/dprk-motor-vehicle-imports-from-china-2000-2017-implications-for-dprk-energy-economy/
- David von Hippel, Peter Hayes, "ENERGY ENGAGEMENT OPTIONS TO SUPPORT A KOREAN PENINSULA DENUCLEARIZATION DEAL", NAPSNet Special Reports, May 28, 2018, https://nautilus.org/napsnet/napsnet-special-reports/energy-engagement-options-to-support-a-korean-peninsula-denuclearization-deal/

COVID-19 Impact on DPRK Energy Sector

- Little or no direct data, but COVID-19 has undoubtedly affected DPRK oil product supply and demand, as well as demand for other fuels
- Estimate net impact of pandemic in 2020 (and beyond) on energy by analysis considering:
 - National COVID-19 "lockdown", including military lockdowns at times, school closures, and quarantines, have continued to restrict fuel products demand/availability in many sectors through 2020 (and likely continuing in 2021)
 - Restrictions on fuel imports, both on- and off-books, by limited and slowed cross-border commercial traffic by land and sea, particularly with China, as well as with other trading partners, combined with crackdown on smuggling

COVID-19 Impact on DPRK Energy Sector

- Estimate net impact of pandemic in 2020 (and beyond) on energy by analysis considering:
 - Economic losses reported by DPRK state media, anecdotal increases (though not consistent) changes in fuel prices
 - Issues with industrial output due to lack of inputs and spare parts from China, affecting the mining sector as well
 - Demonstrable idling of the DPRK's maritime fleet, including many of the ships that have been implicated in unofficial trade in coal and oil products, starting with a recall of ships on January 22 (2020)
- Results: Estimated lower (15-20%) demand/supply for oil, coal, electricity
 - 25% reduction in coal output due in part to (further) export restrictions
 - Biomass fuel use not much changed on net basis


Nautilus DPRK Energy Sector Analysis: **Overall Approach**

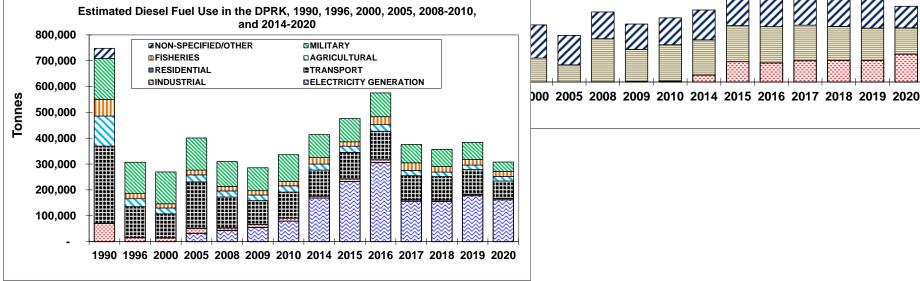
- Obtain as much information as possible about the DPRK economy and energy sector from media sources, visitors to the DPRK, and other sources
 - > Any and all types of information—the few official DPRK stats and announcements, trade statistics, reports/analysis by others, commissioned research, papers prepared at Nautilus workshops (including by DPRK delegations), anecdotal...
- Use available information, comparative analysis, and judgment to assemble a coherent and consistent picture of the DPRK energy sector (energy balance)
- Think about possible future paths for DPRK energy sector/economy, changes (national, regional, global) that might bring those paths about, what changes might mean at end-use, infrastructure levels

DPRK Coal Supplies

- Huge increases in exports to China ~2010 2016 probably doubled total domestic output by 2016 relative to 2010 estimates
- Large fall in reported exports in 2017 due to sanctions
- Probably some "offbooks" exports, but volume unlikely to make up for imported drop.
- Many of mines geared for export may have reduced production, rather than shifting sales to domestic market.

DPRK Oil Supply and Demand


- Caveats: There is little solid information about energy demand in the DPRK; our estimates are consistent with available information, but true figures may be different
- For 2014 2020 we have assumed additional oil products imported "off-books", because
 - > A) some off-books imports have inevitably gone undetected, and
 - > B) it seems improbable that DPRK oil products demand could decrease enough to account for the decrease in reported total fuels imports without severe/visible economic dislocation, which visitors have not reported.
- It is possible that off-books imports were either greater than estimated, meaning higher oil products use (particularly in 2017-2019), and/or that some demand was served by drawing down stocks of oil products
- 2019-on UN "Panel of Expert" reports suggest that DPRK oil product imports via ship-to-ship transfers in (for example) 2018 as high as 500,000 tonnes (assuming ships were nearly full, which we do not); we assume "off-books" trade of 160,000 tonnes in 2018



DPRK Oil Demand

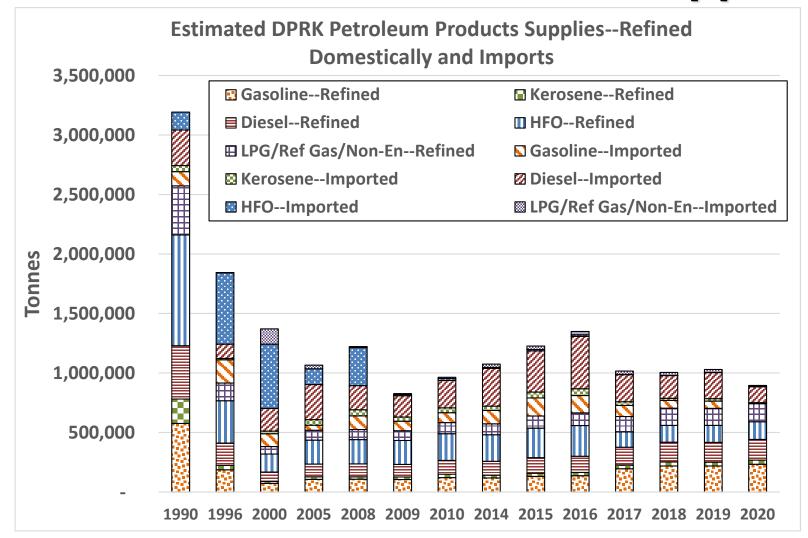
Estimates of Diesel and Gasoline use by sector (and for

electricity generation)

2014-2020

■TRANSPORT

ELECTRICITY GENERATION


MILITARY

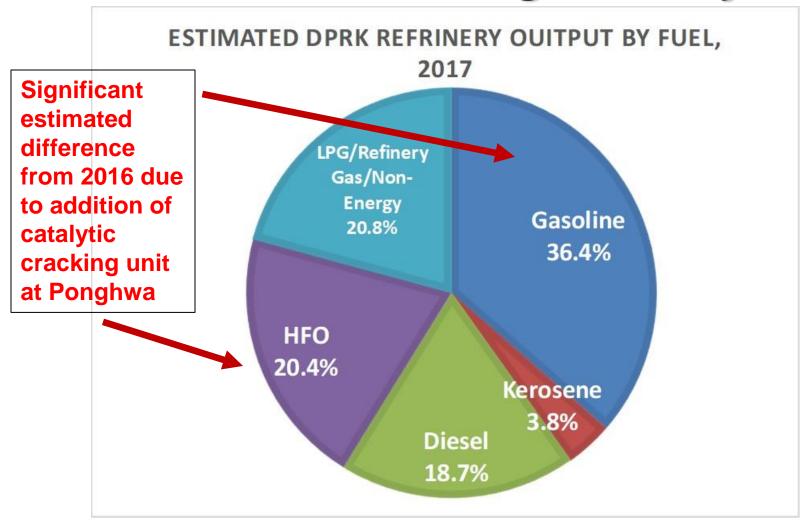
DPRK Oil Storage

- Example—New and expanded oil storage at Nampo: total estimated at ~200,000 cubic meters (DPRK total ~1.5 M cu m)
 - New footings for tanks not yet built at upper left (for ~+20-30k cu m)
 - > At least 5 tanks, maybe 50-70,000 cubic meters, built in 2020

DPRK Petroleum Products Supplies

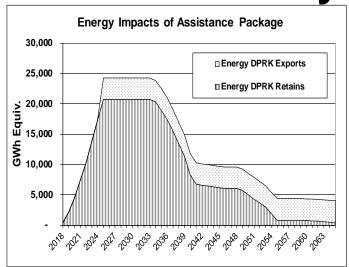
DPRK Oil Refining Industry

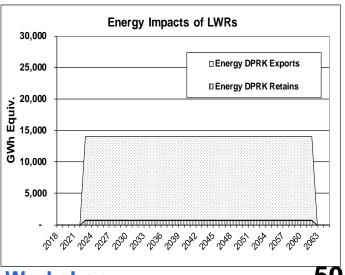
- Two major refineries
 - Northwest (Ponghwa Oil Refinery): receives crude oil from China via pipeline, runs at part capacity
 - 2016 addition of "cracker" unit, potentially significant for chemical precursor production
 - Northeast (at Sonbong): has received oil from Russia, Middle East, has not run much since 1990s
 - > Both older, small by international standards
 - Sonbong refinery expansion is a possible cooperation project
- A third, simple refinery, reportedly near
 Nampo, may produce fuels for the military
 - Source of crude oil for refinery unclear, could come from domestic production, or "unofficial" imports



DPRK Oil Refining Industry

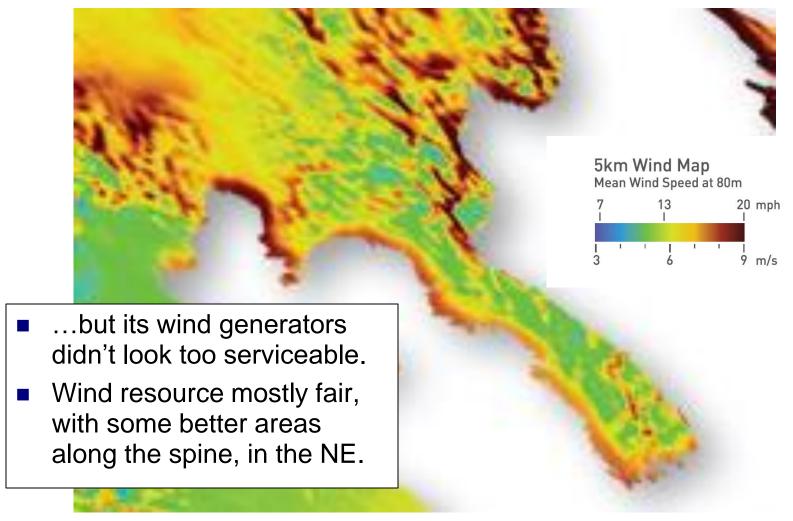
Sungri Chemical Plant Oil Refinery at Sonbong (Sovietbuilt refinery near Russian border, currently inactive)


DPRK Oil Refining Industry

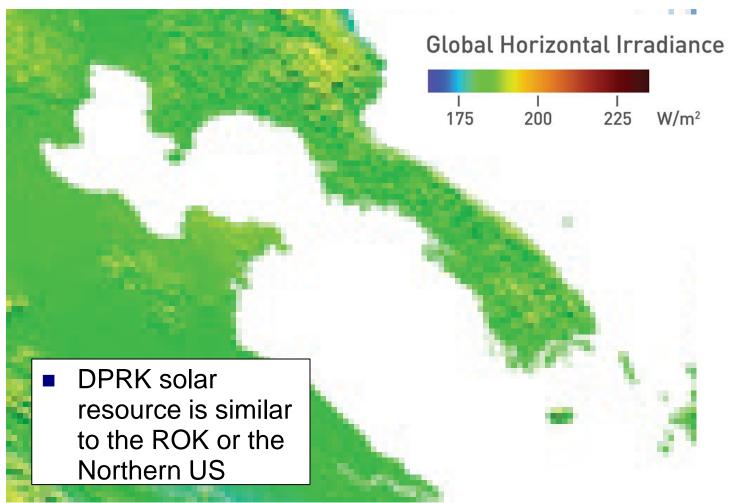


DPRK Energy Sector Engagement Options for the International Community

Illustrative "2 GWe LWRequivalent" overall energy assistance package phased in as DPRK meets agreement obligations



The DPRK Electricity Grid: DPRK-made Mini-Hydroelectric Turbine-Generator


DPRK Renewable Energy: Wind Resources

DPRK Renewable Energy: Nautilus/KANPC DPRK Humanitarian Wind Power Project


DPRK Renewable Energy: Solar Resources

What Do North Koreans Say that They Want for the Energy Sector?

- Light Water (nuclear) Reactor—point of national pride, benchmark of previous negotiations
- Upgrading of large thermal, hydro plants
- Cooperation and training in energy efficiency in many areas
 - Improving building energy efficiency, including solar passive design, efficient residential and office buildings, and application of building energy design software
 - Application of energy efficiency technologies and methods generally throughout the economy

What Do North Koreans Say that They Want for the Energy Sector?

- Small- and medium-scale renewable energy technologies (solar, wind, hydro, production of methane gas from wastes)
- Cooperation and training related to mining technologies (coal/minerals)
- Building human and institutional capacity in many areas
 - Acquisition of technical materials, receiving instruction in basic energy concepts and in the use of design and analysis tools and software...

